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Nonsteroidal anti-inflammatory drugs (NSAIDs) remain among

the most commonly used medications because of their

effectiveness in reducing pain and inflammation. Inhibitors of

gastric acid secretion can substantially reduce the damaging

effects of NSAIDs in the stomach and duodenum. However,

there are no proven effective preventative or curative

treatments for NSAID-induced enteropathy. In recent years,

substantial progress has been made in better understanding

the pathogenesis of NSAID-enteropathy, and in particular the

interplay of enteric bacteria, bile and the enterohepatic

recirculation of the NSAIDs. Moreover, it is becoming clear that

suppression of gastric acid secretion significantly worsens

NSAID-enteropathy.
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Introduction
Nonsteroidal anti-inflammatory drugs (NSAIDs) remain

a mainstay for treatment of numerous inflammatory

diseases, including osteoarthritis, despite significant

untoward effects on the gastrointestinal (GI) tract.

The damage caused by these drugs in the stomach

and duodenum can be greatly reduced by co-adminis-

tration of inhibitors of gastric acid secretion, such as

proton pump inhibitors (PPIs) and histamine H2 re-

ceptor antagonists (H2RAs). As discussed in the article,

these drugs are not without adverse effects, so there
www.sciencedirect.com 
continues to be a search for improved approaches for

preventing NSAID-gastroduodenopathy.

Much recent research has been focused on the damage

caused by NSAIDs in the lower intestine. NSAID-entero-

pathy has a distinct pathogenesis from the damage pro-

duced in the upper GI tract [1]. Suppression of

cyclooxygenase activity contributes to NSAID-enteropa-

thy, but the roles of bile and bacteria appear to be much

more significant (Figure 1). There is a growing interest in

NSAID-enteropathy largely because of improved

methods for detecting the damage, through video capsule

endoscopy and double-balloon enteroscopy. Moreover,

emerging evidence that the use of agents that suppress

gastric acid secretion is causing a significant worsening of

the small intestinal damage caused by NSAIDs [2–4,5�] is

stimulating further research into the pathogenesis of this

condition.

Gastroduodenal protection
Secretion of bicarbonate by gastric and duodenal epi-

thelial cells is an important component of mucosal

defence. Hydrogen sulfide (H2S) has been shown to

markedly reduce the severity of gastric damage induced

by NSAIDs [6] or by ischemia–reperfusion [7]. Mainten-

ance of gastric blood flow [8] and inhibition of leukocyte–
endothelial adhesion [9] contribute to the protective

effects of H2S, but stimulation of bicarbonate secretion

may be another important mechanism. Takeuchi et al.
[10��] demonstrated a key role of endogenous H2S in the

secretion of bicarbonate in the rat duodenum that is

stimulated by mucosal acidification. Duodenal bicarbon-

ate secretion was increased following the administration

of an H2S donor, and reduced by an inhibitor of endogen-

ous H2S synthesis. The latter also led to enhanced acid-

induced duodenal damage. Acid-induced duodenal

bicarbonate secretion was also shown to be mediated

by two other gaseous mediators, nitric oxide and carbon

monoxide [10��].

Regulation of bicarbonate secretion by H2S also extends

to the stomach and may contribute significantly to the

gastroprotective effects of this mediator [11]. As shown in

Figure 2, administration of an H2S-releasing derivative of

naproxen (ATB-346) resulted in a marked (�50%)

decrease in gastric acidity, with an increase in mean

pH of gastric juice from 1.48 to 2.11, and a �82% decrease

in the volume of secretion. These changes are most likely
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Interactions among bile, intestinal microbes and enterohepatic

circulation of NSAIDs contribute significantly to NSAID-induced

intestinal damage. The cytotoxicity of bile is increased following NSAID

administration, and also by conversion from primary to secondary bile

acids (catalyzed by bacterial enzymes). Bacteria also contribute to

enterohepatic recirculation of NSAIDs, as bacterial b-glucuronidase is

necessary for NSAID reuptake in the ileum. Suppression of gastric acid

secretion leads to significant changes to the intestinal microbiota and

increases the cytotoxicity of bile, but the temporal relationship of these

effects remains unclear.

Figure 2
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ATB-346, a hydrogen sulfide-releasing derivative of naproxen,

significantly reduced gastric acidity (upper panel), but did not affect

gastric emptying rates (lower panel). In contrast, naproxen itself did not

affect gastric acidity, and the effect of the H2S-releasing moiety of ATB-

346 (4-hydroxy-thiobenzamide; TBZ) did not reach statistical

significance. Naproxen was administered at 20 mg/kg, and the other

drugs were administered at equimolar doses to that of naproxen.

**P < 0.01 versus the vehicle-treated group; cP < 0.05 versus the TBZ-

treated group. Data are shown as the mean � standard error of the

mean of at least 5 rats per group. The data were analyzed by a one-way

analysis of variance followed by Dunnett’s multiple comparison test.
attributable to a combination of increased gastric

bicarbonate secretion and decreased gastric acid

secretion. Mard et al. [12] recently reported that H2S

could inhibit gastric acid secretion, but it is possible that

at least some of the decrease in titratable acidity that they

observed was actually due to stimulation of bicarbonate

secretion. ATB-346, naproxen and TBZ did not affect

gastric emptying rates (Figure 2).

NSAID-enteropathy
Exacerbation by acid suppressing drugs

A number of studies have confirmed the ability of

NSAIDs, including low-dose aspirin, to cause significant

ulceration and bleeding in the small intestine [13–15].

Indeed, co-use of an NSAID with low-dose aspirin and

inhibitors of gastric acid secretion is now commonplace,

but can result in a synergistic increase in intestinal injury

and bleeding [16��,17], which has been described as ‘the
perfect intestinal storm’ [5�]. As is the case in humans, the

most severe ulceration caused by NSAIDs is found in the

ileum [15]. Recent human data are consistent with what

has been reported in animal studies [2–4,5�,16��]. Thus,

using video capsule endoscopy, Watanabe et al. [18��]
examined the small intestine of rheumatoid arthritis

patients taking NSAIDs. Using multivariate regression

analysis, they identified risk factors associated with

severe intestinal damage and significantly decreased
Current Opinion in Pharmacology 2014, 19:11–16 
hemoglobin levels [18��]. The three statistically signifi-

cant relative risk factors (RR) were the use of a PPI (RR:

5.22), age over 65 years (RR: 4.16), and the use of a H2RA

(RR: 3.95).

Intestinal protection through inhibition of NSAID

reabsorption

Enterohepatic circulation of NSAIDs is a key component

of the mechanism of damage these drugs produce in the

small intestine (Figure 1). After absorption, NSAIDs can

undergo glucuronidation in the liver and are then secreted

into bile. Bacterial b-D-glucuronidase can deconjugate

the NSAID-glucuronides, facilitating reabsorption of

the NSAID in the ileum. Inhibition of this enzyme with
www.sciencedirect.com
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a novel inhibitor has been shown to prevent enterohepatic

circulation of NSAIDs, and to reduce the intestinal injury

caused by these drugs [19]. Saitta et al. reported that

pretreatment of rats with an inhibitor of b-D-glucuroni-

dase markedly protected against diclofenac-induced

damage in the small intestine [20�]. A similar effect

was observed when indomethacin or ketoprofen was

the NSAID used to induce intestinal damage. Delaying

administration of the b-D-glucuronidase inhibitor until

three hours after NSAID administration resulted in a

diminished protective effect, which was consistent with

pharmacokinetic data suggesting a short half-life of the

inhibitor [20�].

H2S prevents NSAID-enteropathy

An H2S-releasing derivative of naproxen (ATB-346) was

previously shown not to produce gastric damage, even at

exceptionally high doses [21]. Administration of the drug

to rats with compromised gastric mucosal defence also did

not result in significant damage, while the comparator

drug, naproxen (and sometimes celecoxib), caused exten-

sive hemorrhagic damage [21]. This drug also did not

produce intestinal damage when administered twice-

daily over several days [16��]. Blackler et al. [16��]
examined the effects of this drug in several models of

clinical conditions in which susceptibility to NSAID-

induced GI damage is markedly increased, for example,

arthritis, obesity, and hypertension. In each case, ATB-

346 did not cause significant GI damage. Moreover, when

administered together with low-dose aspirin and a PPI

(over several days), ATB-346 did not cause detectable

small intestinal damage, whereas naproxen and celecoxib

at comparable anti-inflammatory doses caused severe

intestinal ulceration and bleeding [16��].

Acid suppression and enteropathy

The most commonly used agents for preventing or treat-

ing NSAID-induced damage in the stomach and duode-

num are antisecretory drugs, such as H2RAs antagonists

and PPIs. However, it has been clear for many years that

these drugs offer no protection to the lower small

intestine, and in recent years it has been reported that

they exacerbate NSAID-induced small intestinal lesions

in rats [2,3,5�]. There are no proven effective preventa-

tive or therapeutic regiments for NSAID-enteropathy [1].

Satoh et al. [22�] examined the effects of three agents with

proven protective effects in the upper GI tract (miso-

prostol, irsogladine, and rebamipide) on diclofenac-

induced intestinal lesions, as well as on the exacerbation

of those lesions by ranitidine or omeprazole. Pretreatment

with misoprostol, irsogladine, or rebamipide inhibited the

formation of intestinal lesions caused by a high dose of

diclofenac alone. These agents also prevented the exacer-

bation of diclofenac-induced lesions that was caused by

ranitidine and omeprazole. These studies involved only

acute administration of diclofenac, so it remains to be

seen if these potential protective agents are effective in a
www.sciencedirect.com 
model where the NSAID is administered repeatedly over

several days [22�].

Bile, bacteria and enterohepatic circulation in NSAID-

enteropathy

Several studies have demonstrated critical roles for the

bile, enteric bacteria and the enterohepatic circulation of

the NSAIDs in the pathogenesis of NSAID-induced

enteropathy [23–27] (Figure 1). A critical role for bacteria

was recently reinforced by a study demonstrating that the

exacerbation of NSAID-enteropathy in rats by treatment

with a PPI was attributable to the dysbiosis that occurred

following PPI administration [2]. Specifically, there was a

marked loss of Bifidobacter following PPI treatment. The

increased susceptibility to NSAID-enteropathy caused by

the PPI could be reversed if intestinal levels of Bifido-
bacter were replenished [2]. It remains unclear why the

PPI-induced dysbiosis resulted in greater NSAID-

induced intestinal damage and bleeding, but it is possible

that this triggered changes in bile that contributed to

intestinal injury.

Numerous clinical reports and animal studies have associ-

ated the chronic use of PPIs or H2RAs with alterations in

the GI tract. Among the reported changes are small

intestinal bacterial overgrowth (SIBO) and bile acid dys-

metabolism [28–31]. The development of SIBO is a direct

consequence of suppression of gastric acid secretion. The

ensuing bile acid dysmetabolism in patients with SIBO is

likely the result of the disproportionate increase in num-

bers of microbes capable of deconjugating bile acids and/

or of converting primary bile acids to secondary bile acids

[28,29,32]. The deconjugation of bile acids by bacterial

enzymes increases bile acid hydrophobicity, thereby

increasing the ability of the bile acid to disrupt the

cellular membranes of enterocytes [33]. Bacterial enzy-

matic conversion of primary bile acids to secondary bile

acids may also contribute to ulceration, because second-

ary bile acids are particularly damaging to intestinal

epithelial cells [17,34]. Therefore, we hypothesized that

bile acid dysmetabolism as a consequence of treatment

with an inhibitor of gastric acid secretion would exacer-

bate NSAID-enteropathy. Using a rat model, we modeled

the common clinical scenario of co-use of an NSAID and

an inhibitor of gastric acid secretion, and we explored how

this would affect the cytotoxic properties of bile. The

results are summarized in Figure 3. Rats treated twice-

daily with famotidine (an H2RA) for nine days did not

develop significant small intestinal damage (Figure 3a),

but the bile collected from these rats was significantly

more cytotoxic when added to cultured intestinal epi-

thelial cells (IEC-6) than the bile collected from vehicle-

treated rats (Figure 3b). Co-treatment of rats with both

famotidine (9 days) and an NSAID (naproxen, for the final

4.5 days) resulted in extensive ulceration and bleeding in

the small intestine (Figure 3a), and bile from rats receiv-

ing these treatments was significantly more cytotoxic in
Current Opinion in Pharmacology 2014, 19:11–16
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Figure 3
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Treatment with an inhibitor of gastric acid secretion (famotidine)

exacerbates NSAID-induced intestinal damage, increases bile toxicity,

and alters the intestinal microbiome in rats. (Panel a) Twice-daily

administration of famotidine (30 mg/kg, po) and naproxen (10 mg/kg, po)

caused extensive small intestinal damage that was significantly more

severe than that induced by naproxen alone (ccP < 0.01) or famotidine

alone (**P < 0.01). Famotidine alone did not cause significant intestinal

damage. Famotidine was administered for nine days, while naproxen

was administered only on the final 4.5 days. (Panel b) In vitro exposure

of rat intestinal epithelial (IEC-6) cells to bile (diluted 1:6 in buffer) that

had been collected from rats treated with vehicle resulted in a low level

Current Opinion in Pharmacology 2014, 19:11–16 
vitro than that from rats treated only with naproxen

(Figure 3b; P < 0.05). Therefore, these data suggest that

a marked increase in the cytotoxicity of bile (seen with

famotidine treatment) is not sufficient to produce overt

intestinal damage, but is likely to be a contributing factor

to the exacerbation of enteropathy when co-administered

with an NSAID. Consistent with clinical reports of SIBO

in patients treated with inhibitors of acid secretion

[30,31], treatment of rats with famotidine resulted in

significant increases (>16-fold) in the number of aerobes

in the jejunum (Figure 3c).

Conclusions
Damage induced in the stomach and duodenum by

NSAIDs can be reduced substantially by co-adminis-

tration of a PPI, and to a lesser extent by co-adminis-

tration of an H2RA. However, these agents are ineffective

in preventing NSAID-induced damage in the more distal

small intestine, and there is growing evidence that by

altering the intestinal microbiota, they worsen NSAID-

enteropathy. H2S is a particularly potent cytoprotective

agent in the GI tract. H2S-releasing NSAIDs produce

negligible upper GI damage even at very high doses and

in animal models where mucosal defence is significantly

impaired. In the small intestine, H2S-releasing NSAIDs

produce negligible damage, even when co-administered

with a PPI and low-dose aspirin.

Development of effective preventative or curative thera-

pies for NSAID-enteropathy requires a better under-

standing of the complicated pathogenesis of this

disorder. Three interrelated factors appear to be of para-

mount importance: the nature of bile, the enterohepatic

circulation of the NSAID, and the nature of the intestinal

microbiota. PPIs can alter these factors, leading to

increased intestinal damage. Bacterial enzymes are

important for deconjugation of NSAIDs in bile, allowing

their reabsorption, as well as for conversion of primary bile

acids to more cytotoxic secondary bile acids. These

bacterial enzymes themselves may be targets for novel

therapies for NSAID-enteropathy.
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of cytotoxicity as measured by lactate dehydrogenase release.

However, when the bile was collected from rats treated with famotidine
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Dunnett’s multiple comparison test.
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